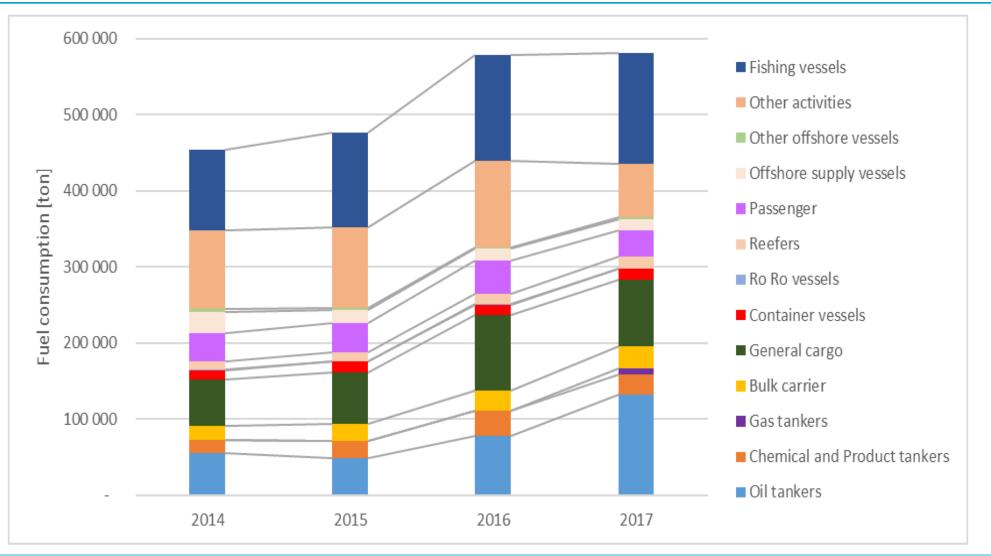
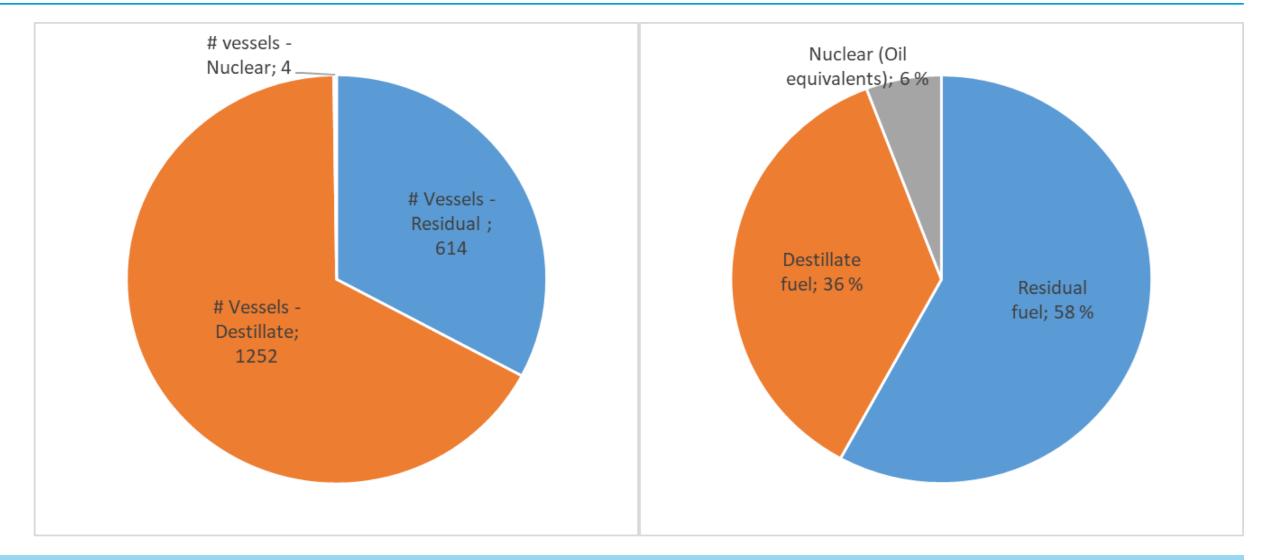

DNV·GL

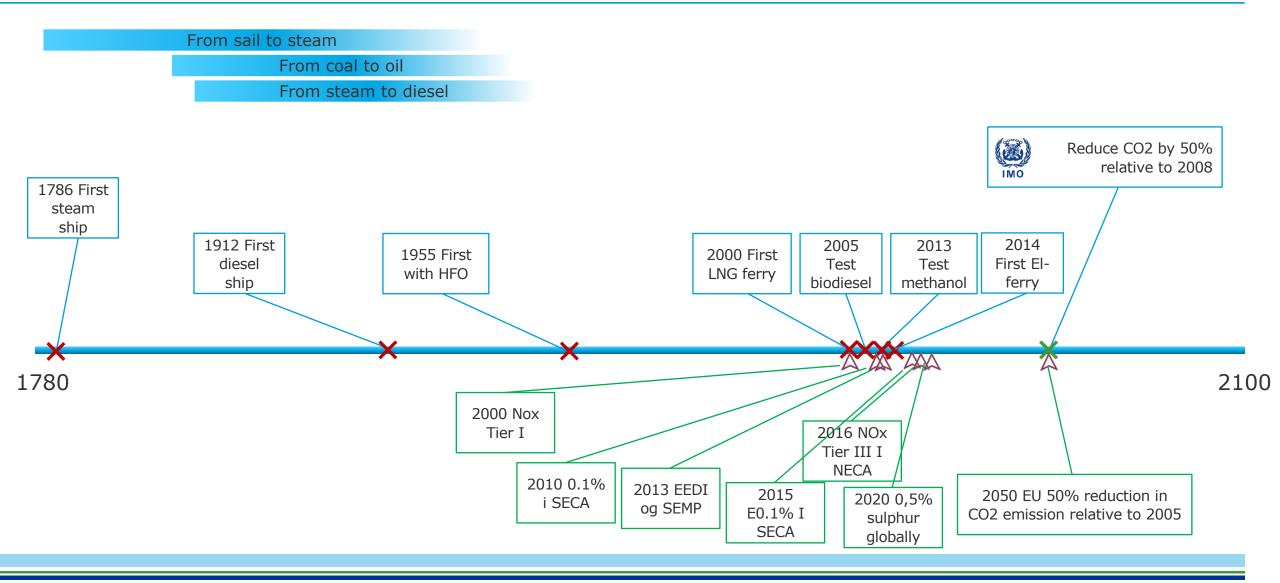
MARITIME


Alternative fuel in the Arctic

Pame Meeting 4-5 February 2019

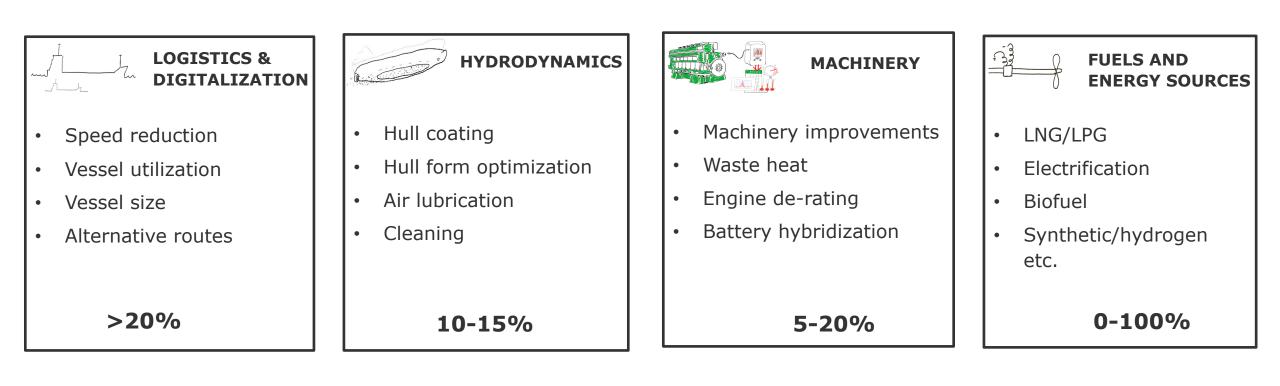
Kjetil Martinsen 05 February 2019

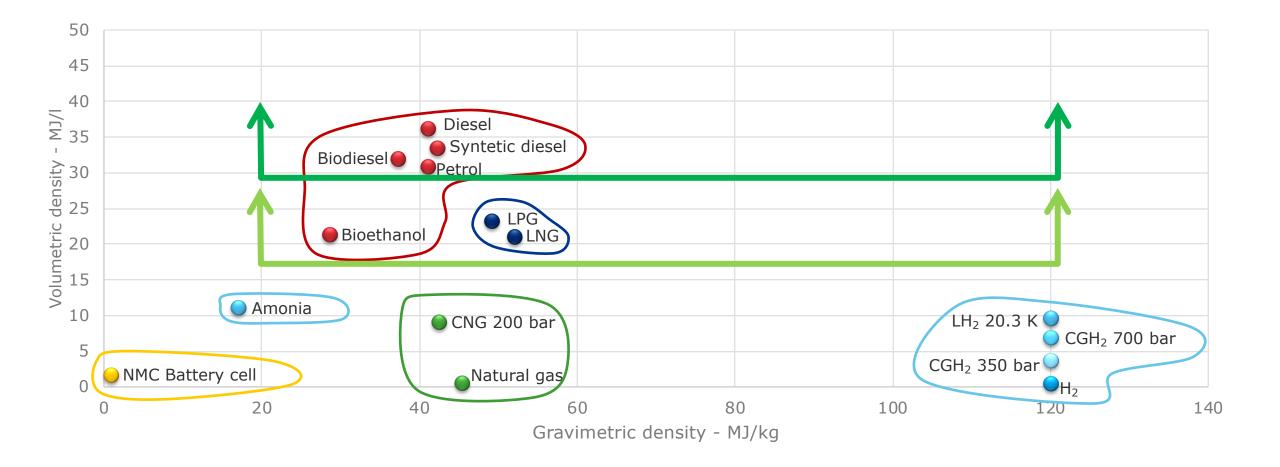

Fuel consumption in the Arctic – 2014 - 2017


Which are the main consumers in the Arctic - 2017

Ship type	<1000 GT	1000 -	5000 -	10000-	25000-	50000-	≥100000	Totals
		4999 GT	9999 GT	24999 GT	49999 GT	99999 GT	GT	
Oil tankers		1 %	1 %	3 %	16 %	2 %	1 %	23 %
Chemical and Product								
tankers	0 %	1 %	1 %	2 %	1 %			5 %
Gas tankers							1 %	1 %
Bulk carrier		0 %		1 %	4 %	0 %	0 %	5 %
General cargo	0 %	1 %	4 %	7 %	2 %			15 %
Container vessels			1 %	1 %				2 %
Ro Ro vessels	0 %			0 %				0 %
Reefers	0 %	1 %	1 %	0 %				3 %
Passenger	0 %	1 %	1 %	1 %	1 %	1 %	0 %	6 %
Offshore supply vessels	0 %	2 %	1 %					3 %
Other offshore vessels	0 %	0 %	0 %					0 %
Other activities	2 %	3 %	4 %	3 %	0 %			12 %
Fishing vessels	5 %	19 %	1 %					25 %
Total	7 %	29 %	15 %	19 %	24 %	3 %	2 %	100%

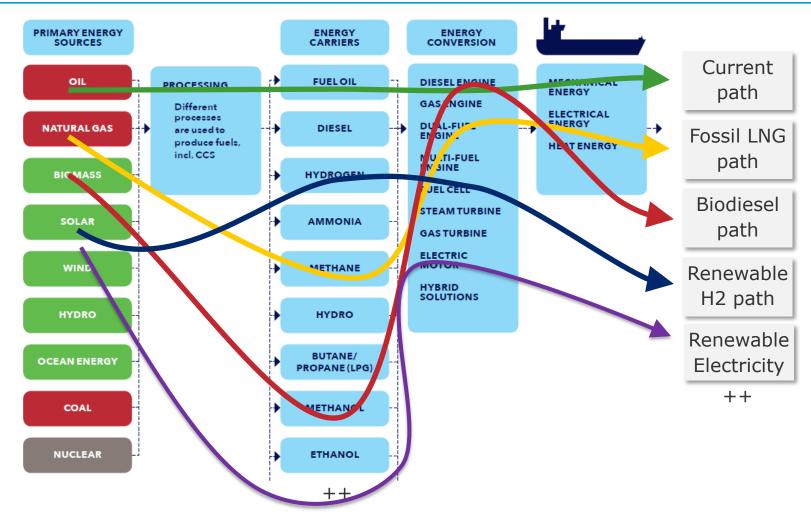
Fuel consumption – Distillates versus Residual


Shipping time line


6

DNV GL ©

Possible strategies for reduces GHG emission from shipping



Volumetric and gravimetric density of fuels

8

Paths to low/zero-emission – no "silver bullet"

Key elements

Energy source:

Fossil, renewable, nuclear?

Prosessering:

Carbon capture

What energy carrier?:

Liquid, gas, hydrocarbons?

Energy converter?:

 Internal combustion, fuel cell, electromotor?

Inspired by Brynolf S. (2014), 'Environmental assessment of present and future marine fuels'

Ranking the fuel/converter options

Fuel alternatives and ranking methodology

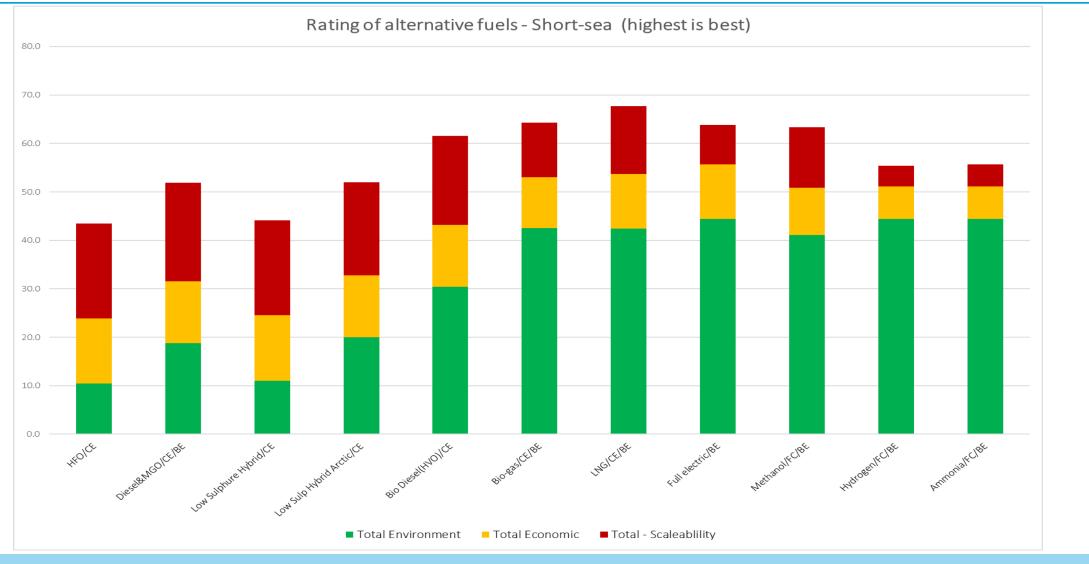
<u>Fuel type</u>	Converter technology		
HFO	Internal Combustion Engine (ICE)		
MGO	ICE/Battery hybrid	Individual for	Same for all fue
Low Sulphur Hybrid	Internal Combustion Engine (ICE)	each fuel type	type
Low Sulphur Hybrid (Arctic optimized)	Internal Combustion Engine (ICE)		
Bio Diesel(HVO)	ICE/Battery hybric		
Bio-gas	ICE/Battery hybric		
LNG	ICE/Battery hybric		
Full electric	Battery Electric.	Scoring	Weighting
0 Methanol	Fuel Cell/Battery H	1=Least favourable 2=Marginally better 3=Imporvement to worst	0 = Irrelevant 1 = Useful 2 = Issestert
Hydrogen 1	Fuel Cell/Battery F	4=Significant improvement 5=Close to best solution	3 = Important 9 = Essential
Ammonia	Fuel Cell/Battery F	6=Best possible solution	

Environmental weighting factors

Environment		WF-Short Sea	WF-Deep Sea	
Emission to air				
GHG emission		3	3	Arctic traffic is of limited in magnitude and impact
Short-lived climate pollutan	ts	9	9	Disproportionally high GHG effect in the Arctic
NOx emission		9	9	Not health – Arctic haze and ozone
SOx		1	1	Mainly health related
PM emission		9	9	Not health – GHG effect
Emission to sea				
Toxicity effects of water soluble components		9	9	Critical in Arctic waters
Environmental damage potential		9	9	Critical in Arctic waters
Response effectiveness		9	9	Critical in Arctic waters

Economic weighting factors

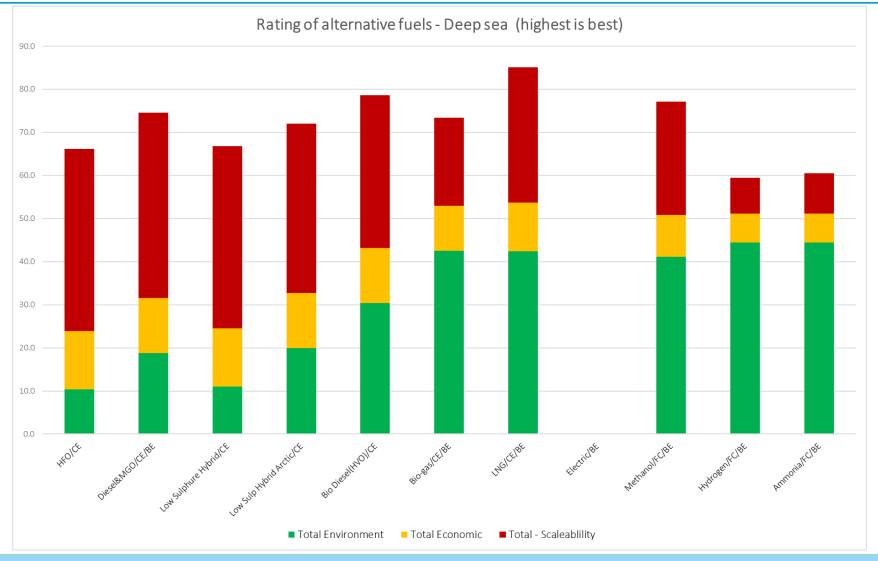
Ship economy	WF-Short Sea	WF-Deep Sea	
Investment cost for the ship (additional cost)	3	3	From a policy maker perspective, economy is considered to be important, but not critical
Compliance cost - cost of modification	3	3	
Fuel cost	3	3	
Operational cost for the ship (crew, maintenance etc)	3	3	


Scalability weighting factors

Sc	alability	WF-Short Sea	WF-Deep Sea	
Те	chnical – Scalability			
	Safety	9	9	limited infrastructure and severe climate
	Technical maturity	3	3	Important, but introducing alternative technologies will require risk taking.
	Energy efficiency - including converter	3	3	Important, but not critical
	System complexity and maintainability	3	3	New technologies will intrinsically lead to an acceptance of a higher degree of complexity
Ap	plicability – Scalability			
	Adaptability - existing ships	3	3	Important – but may require newbuilds anyway
	Power and energy limits	3	9	Less critical for short-sea than for deep-sea
	Compatibility to existing infrastructure	1	9	Less critical for short-sea than for deep-sea

Scalability weighting factors

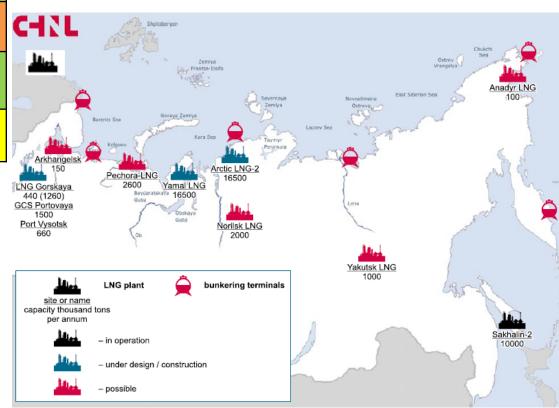
Availibility – Scalability	WF-Short Sea	WF-Deep Sea	
Global availability of fuel	1	9	Not critical for Short-sea shipping – but for deep-sea it is
Available infrastructure	1	9	Less critical for short-sea than for deep-sea – Local investment in infrastructure may be accepted
Reliable and sustainable supply of fuel	3	9	Less critical for short-sea than for deep-sea – Local investment in infrastructure may be accepted


Overall ranking – Short sea

Overall ranking – Short sea

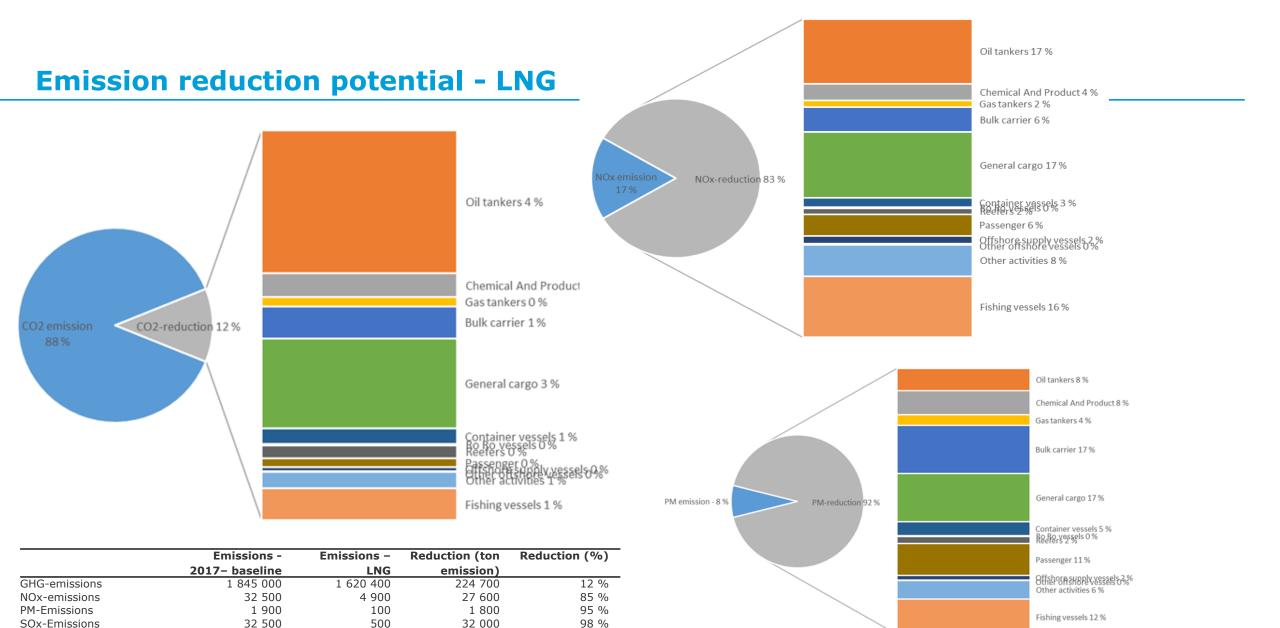
Energy source/carrier		Environmental			Economic		Scalability				
	Air	Bunker	Total Environment	Ship	Total Economic	Technical	Applicability	Availibility	Total - Scaleablility		
HFO/CE	5.8	15	10.4	13.5	13.5	30.75	14.0	14.0	19.6	43.5	
Diesel&MGO/CE/BE	13.6	24	18.8	12.75	12.8	33	14.0	14.0	20.3	51.9	
Low Sulphure Hybrid/CE	10	12	11.0	13.5	13.5	30.75	14.0	14.0	19.6	44.1	
Low Sulp Hybrid Arctic/CE	10	30	20.0	12.75	12.8	30.75	14.0	13.0	19.3	52.0	
Bio Diesel(HVO)/CE	21.8	39	30.4	12.75	12.8	31.5	14.0	9.7	18.4	61.5	
Bio-gas/CE/BE	31	54	42.5	10.5	10.5	23.25	8.3	2.3	11.3	64.3	
LNG/CE/BE	30.8	54	42.4	11.25	11.3	23.25	8.3	10.7	14.1	67.7	
Full electric/BE	34.8	54	44.4	11.25	11.3	17.25	4.3	3.0	8.2	63.8	
Methanol/FC/BE	34.2	48	41.1	9.75	9.8	21.75	7.7	8.0	12.5	63.3	
Hydrogen/FC/BE	34.8	54	44.4	6.75	6.8	6	3.3	3.3	4.2	55.4	
Ammonia/FC/BE	34.8	54	44.4	6.75	6.8	6	4.3	3.3	4.6	55.7	

Overall ranking – Deep sea



Overall ranking – Deep sea

Energy source/carrier	Environmental				onomic		Sum total			
			Total		Total		Applica	Availibili	Total - Scaleablili	
	Air	Bunker	Environment	Ship	Economic	Technical	bility	ty	ty	
HFO/CE	5.8	15	10.4	13.5	13.5	30.75	42.0	54.0	42.3	66.2
Diesel&MGO/CE/BE	13.6	24	18.8	12.75	12.8	33	42.0	54.0	43.0	74.6
Low Sulphure Hybrid/CE	10	12	11.0	13.5	13.5	30.75	42.0	54.0	42.3	66.8
Low Sulp Hybrid Arctic/CE	10	30	20.0	12.75	12.8	30.75	42.0	45.0	39.3	72.0
Bio Diesel(HVO)/CE	21.8	39	30.4	12.75	12.8	31.5	42.0	33.0	35.5	78.7
Bio-gas/CE/BE	31	54	42.5	10.5	10.5	23.25	29.0	9.0	20.4	73.4
LNG/CE/BE	30.8	54	42.4	11.25	11.3	23.25	29.0	42.0	31.4	85.1
Electric/BE	0	0	0.0	0	0.0	0	0.0	0.0	0.0	0.0
Methanol/FC/BE	34.2	48	41.1	9.75	9.8	21.75	27.0	30.0	26.3	77.1
Hydrogen/FC/BE	34.8	54	44.4	6.75	6.8	6	7.0	12.0	8.3	59.5
Ammonia/FC/BE	34.8	54	44.4	6.75	6.8	6	10.0	12.0	9.3	60.5


Barriers to introducing LNG in the Arctic

Main category	Sub category	Barrier level	Comments
Technical	Safety and reliability Technical maturity Infrastructure and availability	Low	Mature technology Lack of infrastructure for LNG, charging
Economic	Commercial implications Economic and finical challenges Taxes and incentives	High	High investment cost Suitable for new buildings Lack of marked demand
Regulatory	Rules by authorities Class rules Incentives and incentives	Low	Established by IMO Established major classifications society Lack of incentives and drivers
Cultural/no n-technical	Organizational challenges Complexity in applications	Significant	Organizational challenges Operational and competence intensive

WWF, 2017

									1				
			nber of uniq				esidual						
	< 999	1000 - 4999	5000 – 9999	10000- 24999	25000- 49999	50000- 999999	> 100000	Grand Total					
Oil tankers		43	7	10	23	21	4	108					
Chemical and Product	1	27	12	16	10			66					
Gas tankers					1		5	6					
Bulk carrier		4		34	71	2	2	113					
General cargo	8	65	76	45	15			209					
Container vessels			7	4				11	LNG engine alternative	Reduction CO2	Reduction NOx	Reduction PM	Reduction SOx
Ro Ro vessels	7			1				8	Not compatible with LNG	0%	0%	0%	100%
Reefers	2	51	38	7				98	4-stroke – low- pressure LNG engine	5%	90%	98%	100%
Passenger	19	19	9	15	19	17	3	101	2-stroke – high- pressure LNG engine	20%	90%*	98%	100%
Offshore supply													
vessels	6	25	8					39					
Other offshore													
vessels	5	4	4	1		1		15					
Other activities	182	85	33	26	3			329					
Fishing vessels	415	335	15					765					
Sum Total	645	658	209	159	142	41	14	1868					

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

