
Synoptic Arctic Survey

The Synoptic Arctic Survey (SAS) – towards 2020

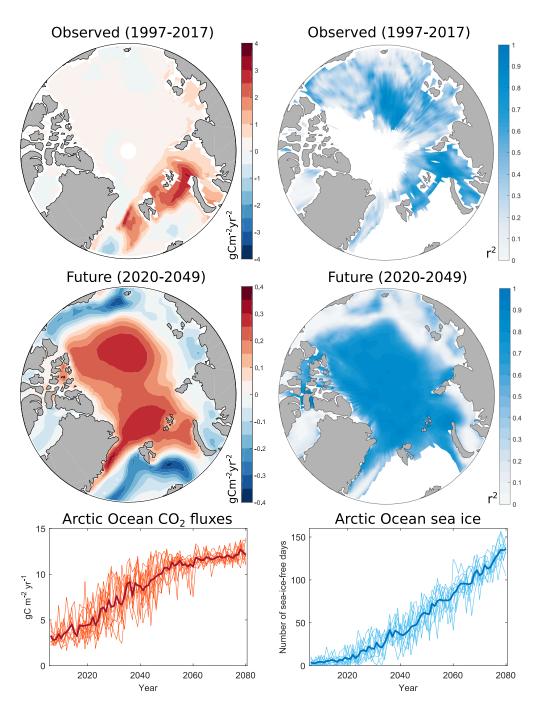
Øyvind Paasche, Are Olsen, Leif Anderson, Jeremy Wilkinson, Jackie Grebmeier, Takashi Kikuchi, Sung-Ho Kang, Carin Ashjian and the SAS Community.

Second International Science and Policy Conference on Implementation of the Ecosystem Approach to Management in the Arctic, Bergen, June 27, 2019

The Research Frontiers in the Arctic

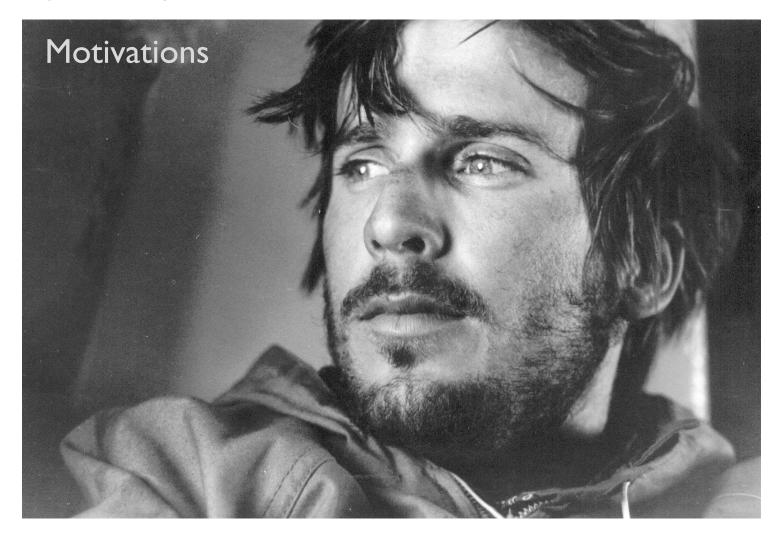
«What lies hidden in Greenland's big unknown interior?

«There is no point in trying to calculate or speculate how Greenland is built in its interior; we live in the era of empiricism, let us therefore first see, often enough have a single solitary observation overthrown an entire system of dogmas and theories.»


Fridtjof Nansen (1888)

The old and the new (and troublesome) Arctic

(i) The rapid transformation of the Arctic Ocean will continue for decades to come regardless of any reductions in global CO2 emissions


(ii) The scientific challenges arising from this makeover of the Arctic Ocean and its drivers and consequences are too large to be handled by any country alone and too complex to be properly understood through single discipline approaches.

Paasche et al., (submitted)

Eddy Carmack:

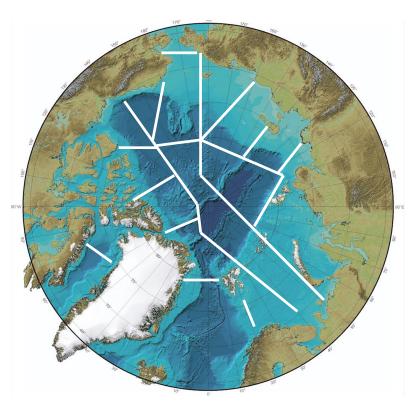
«Our current view of the Arctic Mediterranean is decidedly 'regional' because historical efforts have focused on regions with the result that we sense the parts but not the whole. A synoptic view of the Arctic Ocean is lacking and is sorely needed.»

Synoptic Arctic Survey

What is it?

Synoptic Arctic Survey is a bottom-up, researcher driven, initiative aiming at collecting empirical data in the Arctic ocean that cannot be done in any other way than through cruises! SAS will take place in 2020 (+2021) involving the coordination of many research vessels (not all ice breakers).

THE GOAL is to generate a comprehensive dataset that allow for a complete characterization of Arctic hydrography and circulation, carbon uptake and ocean acidification, tracer distribution and pollution, and organismal and ecosystem functioning and productivity.


THE DATA will provide a unique baseline, which will allow us to track climate change and its impacts as they unfold in the Arctic over the coming years, decades and centuries. There can be no doubt that not only future generations of polar scientists will benefit from such a baseline, but also decision makers.

There is a historical LEGACY dating back to The Maud Expedition (1918-1925) where the acclaimed Norwegian researcher Harald Ulrik Sverdrup was in charge of the science conducted at the traverse of the Northeast Passage.

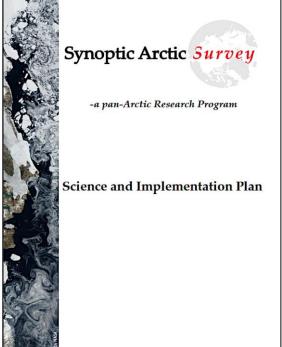
Collaborating for better observations of the Arctic Ocean

- Coordinate nationally funded Arctic Ocean cruises in time and space into a set of intersecting sections
- To retrieve the **full three-dimensional structure** of the Arctic, the distribution of *important chemical elements*, and *ecosystem properties* based on data from a single year
- Ultimate vision: the first of repeated decadal suveys of the Arctic Ocean
- Creating **a backbone** for Arctic Ocean research

Synoptic Arctic Survey

An international, researcher driven, initiative

Leif Anderson, Are Olsen, Øyvind Paasche, Takashi Kikuchi, Carin Ashjian, Peter Schlosser, Jim Swift, Heidimarie Kassens, Sebastian Gerland, Jeremy Wilkinson, Jackie Grebmeier, Eddy Carmack, Melissa Chierici, Kumiko Azetsu-Scott, Jeremy Mathis, Jackie Grebmeier, Vidar Lien, Lise Lotte Sørensen, Jens Hölemann, Andrey Novikhin, Kyoung-Ho Cho, Sung-Ho Kang, Karen Edelvang, Motoyoh Itoh, Oleg Titov, Michio Yamamoto-Kawai, Vladimir Ivanov, Colin Stedmon, Bill Williams +++



Idea conceived, Japan-Norway Marine Science week 2014 2015 St. Petersburg 2016 2017 2018

First international SAS workshop, Washington DC Gothenburg, develop SAS Science and Implementation plan First draft of Science Plan completed First national group formed, Sweden

National meeting Japan National meeting Norway UK, submitted 'highlight topic to NERC' "National" meeting Canada National meeting Denmark Germany + Science Plan Complete Russia SAS Planning meeting - USA

Establish SSG, fall 2018

Planned year of the Synoptic Arctic Survey (SAS–2020)

Woods Hole Oceanographic Institution

ABOUT WHOI A-Z WHOI LABS/GROUPS LISTING

HOME PAGE

2019 Synoptic Arctic (SAS) Workshop

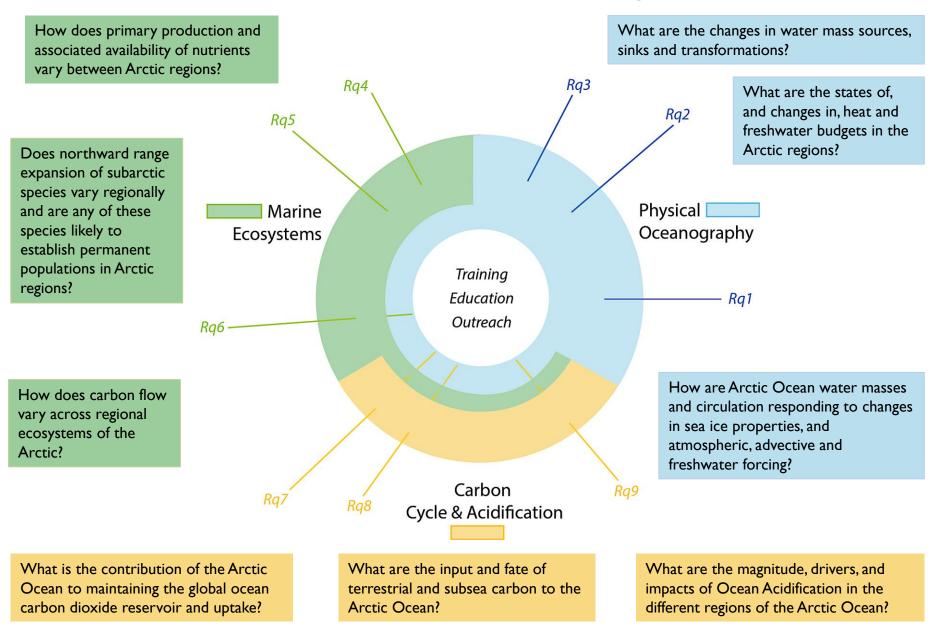
The Synoptic Arctic Survey (SAS) – International Planning and Coordination Workshop

May 15-16, 2019

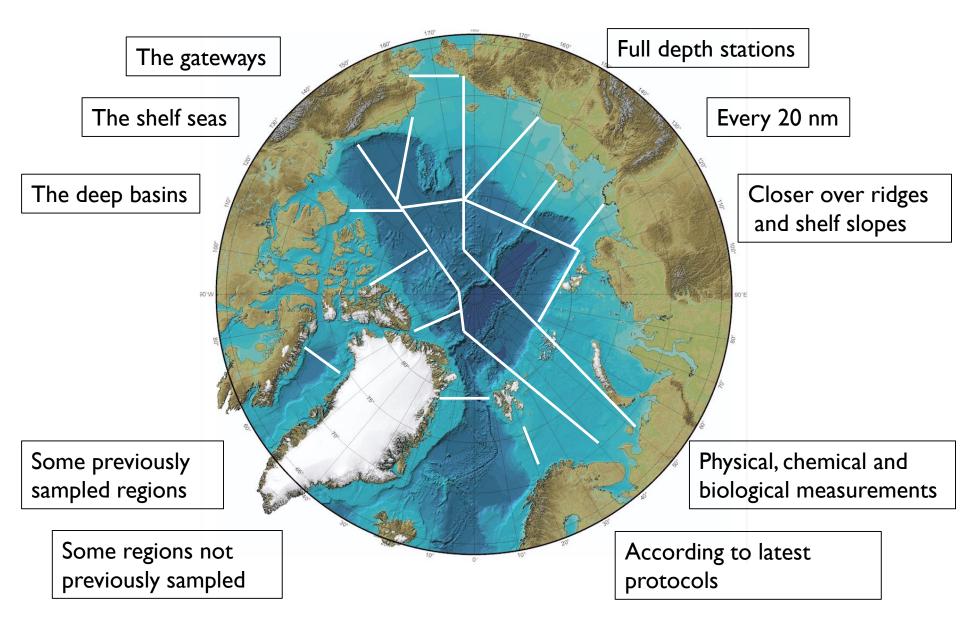
Woods Hole Oceanographic Institution Woods Hole, Massachusetts, USA

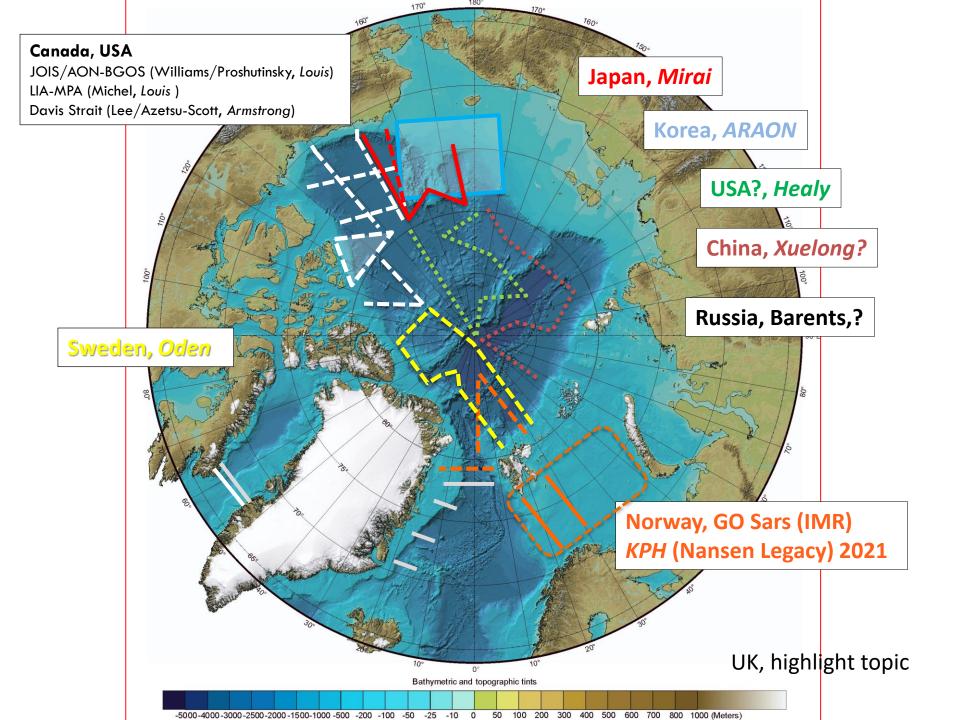
There will be an open coordination and planning workshop to continue planning the Synoptic Arctic Survey (SAS) project on May 15-16, 2019 at the Woods Hole Oceanographic Institution in Woods Hole, MA, USA. The SAS is a developing international program envisioned to mount a coordinated, multi-nation, oceanographic field based effort on a Pan Arctic scale quasi-synoptically over two summer seasons (2020-202) to achieve the baseline understanding of the fundamental structure and function of the linked Arctic carbon-ecosystem-physical systems that will permit detection of ongoing and future changes. The goals of the workshop include planning coordinated field sampling, international data sharing, education including graduate student participation, post field-season data synthesis, public outreach, and involvement of indigenous communities and identifying additional measurements (e.g., atmospheric measurements) or approaches (e.g., modeling) that would contribute to accomplishing the goals of the SAS. The SAS is a ground-up effort and wide participation, including all professional levels of scientists, graduate students, and science managers across multiple disciplines and indigenous community members, in the planning is welcome!

Q


MATERIALS

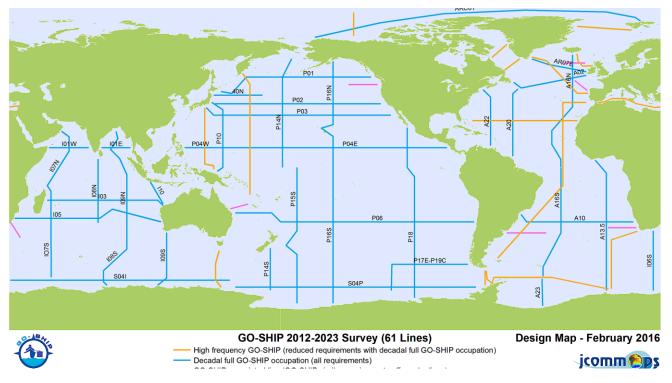
Funded by:




Links SAS Agenda SAS Workshop Travel Information SAS Science Plan SAS Home Page Ashijan Intro Goals

What are the present state and major ongoing transformations of the Arctic marine system?

Synoptic Arctic Survey Observations

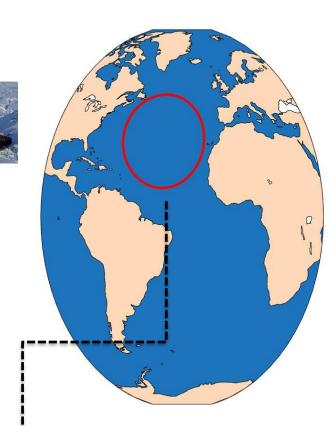


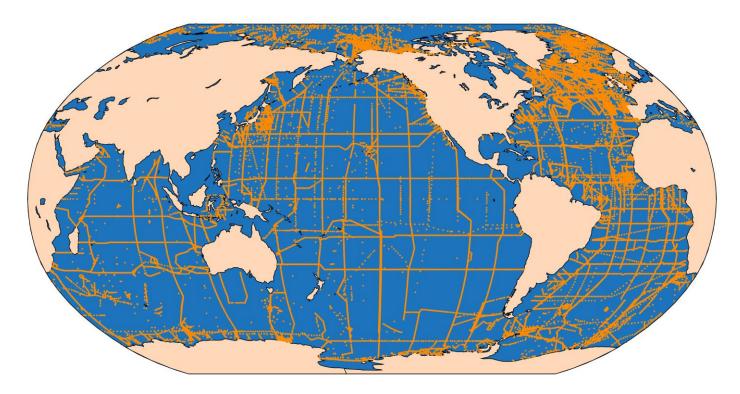
Global Ocean Ship-Based Hydrographic Investigations Program

The GO-SHIP Panel was established in 2007 by the IOCCP and CLIVAR to develop a strategy for a sustained global repeat hydrography program and to revise the 1994 WOCE hydrographic program manual.

- Decadal global ocean coverage of a set of level 1 variables, measured according to strict protocols.
- Heat, Carbon, OA, Oxygen, ventilation rates etc.
- Data are quickly made available (e.g. at CCHDO) and synthesized into global data products (GLODAP)

SAS ambition – to create an Arctic GO-SHIP

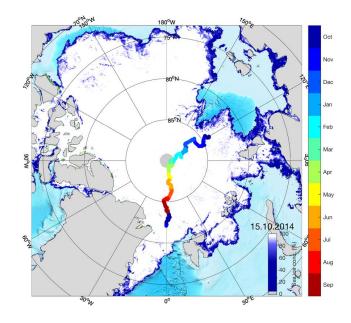




- Adopt a GO-SHIP model for Arctic ship-based field work
- Given: the large variability, the large number of available ships, the large interest in Arctic research, and the small size of the Arctic Ocean
- This should and can be done during a single year,
- □ repeated every decade,
- and have an <u>ecosystem</u> sampling program

NB:The circle represents the size of the Arctic Ocean, smaller than you might think

Data Synthesis


- Merged, homogenized, consistent data products are much more useful than individual data sets.
 - At some point a SAS data product should be prepared.
 - For hydrography and biogeochemistry; should be patterned after GLODAP,
 - securing internal consistency using crossover checks on deep data.
 - Therefore, we must ensure that the individual cruises overlap in space.

Global coverage of GLODAPv2.2019, with data from 840 cruises (Olsen et al. ESSD, 2019)

Synergy with other large community initiatives

YOPP is the flagship activity of PPP with the aim of enabling a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, verification, user-engagement and education activities.

Core phase : May 2017 to June 2019.

The primary objective of MOSAiC is to develop a better understanding of these important coupledsystem processes so they can be more accurately represented in regional- and global-scale models. Starting Sept 2019, ending Oct. 2020

SAS2030 \rightarrow UN's Decade of Ocean Science

The United Nations has proclaimed a **Decade of Ocean Science for Sustainable Development (2021-2030)** to support efforts to reverse the cycle of decline in ocean health and gather ocean stakeholders worldwide behind a common framework that will ensure ocean science can fully support countries in creating improved conditions for sustainable development of the Ocean.

021 United Nations Decade of Ocean Science for Sustainable Development

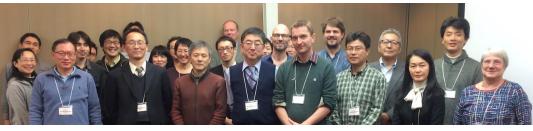
Restricted Distribution

IOC/EC-LI/2 Annex 3

Paris, 18 June 2018 Original: English

INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION (of UNESCO)

Fifty-first Session of the Executive Council UNESCO, Paris, 3–6 July 2018

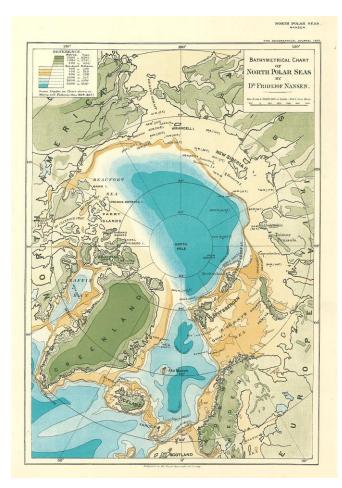

First international SAS workshop, Washington DC (2015)

St. Petersburg, German Consulate (2016)

Gothenburg, start develop SAS Science and Implementation plan (2016)

First national group formed, Sweden (2017

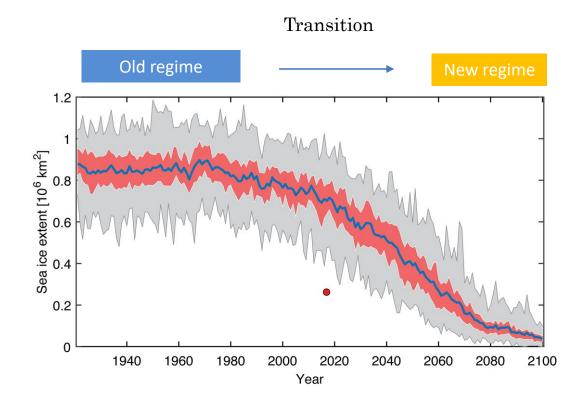
National meeting Japan and Norway (2018)



Thank you for your attention

«Because of its [The Arctic] remoteness, the severity of its climate, and the logistic problems which these two factors impose, efforts at scientific study must be made on a geographic rather than a on strictly disciplinary basis. It is for this reason that interdisciplinary and international collaboration is here even more important than elsewhere, ...»

Proceedings of the Arctic Basin Symposium, October 1962.


https://synopticarcticsurvey.w.uib.no

The Great Arctic Transition

A winter ice-free Barents Sea will/can be reached@:

- \circ 2223^{*I} and 2036^{*q} (extrpl)
- o 2061-2088 (CESM-LE)
- 2028 (GFDL)
- 0 2061 (MPI-ESM)
- o 2063 (NorESMI)

Onarheim & Årthun (2017)

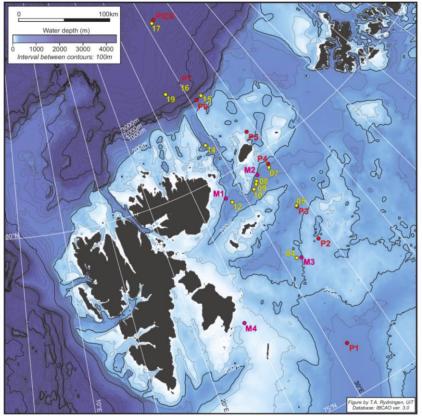
Рар	er	SU	bm	itte	d
I MP		Jul		1 CCC	ч.

Developing the Synoptic Arctic Survey

*Authors and Affiliations

9	Øyvind Paasche§, Bjerknes Centre for Climate Research at University of Bergen and
0	NORCE Climate, Bergen, Norway
1	Leif G Anderson, Department of Marine Sciences, University of Gothenburg, Sweden
2	Are Olsen, Geophysical Institute at University of the Bergen and the Bjerknes Centre
3	for Climate Research, Bergen, Norway.
4	Carin Ashijan, Woods Hole Oceanographic Institution, Woods Hole, US.
5	Jacqueline M. Grebmeier, Chesapeake Biological Laboratory, University of Maryland
6	Center for Environmental Science, Solomons, MD, USA
17	Takashi Kikuchi, Institute of Arctic Climate and Environment Research, Japan Agency
8	for Marine-Earth Science and Technology (JAMSTEC), Japan.
9	Shigeto Nishino, Institute of Arctic Climate and Environment Research, Japan Agency
20	for Marine-Earth Science and Technology (JAMSTEC), Japan.
21	Sten-Åke Wängberg, Dept. Marine Sciences, University of Gothenburg, Sweden
22	Sung-Ho Kang and Kyoung-Ho Cho, Div. of Polar Ocean Sciences, Korea Polar Research
23	Institute (KOPRI), Korea.
24	Kumiko Azetsu-Scott, Department of Fisheries and Oceans, Canada, Bedford Institute of
25	Oceanography, Darthmouth, Canada.
26	Bill Williams, Department of Fisheries and Oceans, Canada, Bedford Institute of
27	Oceanography, <u>Darthmouth</u> , Canada.
28	<u>Sinhué</u> Torres-Valdés, Marine <u>BioGeoSciences</u> at the Alfred Wegener Institute,
29	Bremerhaven, Germany.
30	Toby Tyrrell, Ocean and Earth Science, University of Southampton, European Way,
31	Southampton, UK.
32	Karen Edelvang, Section for Oceans and Arctic, DTU Aqua, Copenhagen, Denmark.
33	Jianfeng He, Polar Research Institute of China, Shanghai, China.
34	Marius Årthun, Geophysical Institute at University of Bergen and the Bjerknes Centre
35	for Climate Research and, Bergen, Norway
86	Sayaka Yasunaka, Research and Development Center for Global Change, Japan Agency
37	for Marine-Earth Science and Technology (JAMSTEC), Japan
38	Eddy Carmack, Fisheries and Oceans Canada, Sidney, BC, Canada
39	Heidi Marie <u>Kassens, GEOMAR</u> , Helmholtz-Zentrum für Ozeanforschung Kiel,
10	Germany.

The Norwegian Contribution



Crown Prince Haakon

The Norwegian Contribution

The Nansen Legacy transect; cruise map 2018

Cruise plans Nansen legacy, RV Kronprins Haakon: 2019/20: Seasonal studies of biological communities, interactions and biogeochemical processes Transect P1 to P-Ice (76-83°N, ~30-35°E) 4-27 August 2019 28 Nov-17 Dec 2019 March 2020 (dates to be confirmed) May 2020 (dates to be confirmed) 2019/20 Moorings and physical processes (dates to be confirmed) 12-27 November 2019 (mooring service/A-TWAIN) January 2020 (physical processes, dates to be confirmed) August (mooring service and physical processes, dates to be conformed) 2021: Prolonged transect further into the Arctic basin

M1-M4: Moorings Yellow points: Geological cores P1-P7-P ice: Process stations Additional moorings north of Svalbard + A-TWAIN moorings on northern shelf break

www.nansenlegacy.org

The Norwegian Contribution

The Barents Sea Ecosystem Survey

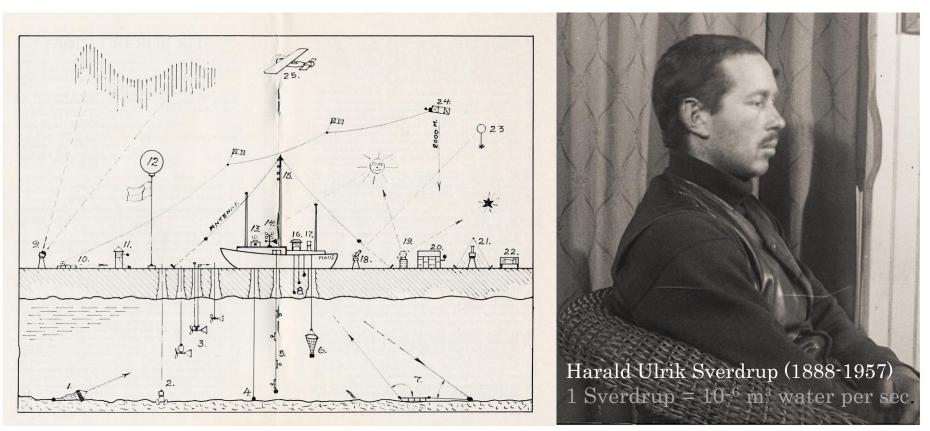
The Fugløya-Bjørnøya transect (seven stations) and the Vardø Nord transect (eight stations).

The Institute of Marine Research (IMR) Monitoring Programme samples two standard transects in the Barents Sea: the Fugløya-Bjørnøya transect (seven stations) and the Vardø Nord transect (eight stations). The Fugløya-Bjørnøya transect is split into two sections: North ("15") and South ("16"), which are each sampled three to six times a year with WP-2 nets from 100 m and/or bottom to the surface. The data in this report are from bottom-to-surface hauls (100-0 m).

Water temperatures along the Fugløya-Bjørnøya transect range from 4°C to 9°C, with the seasonal high in August and the seasonal low in February. Peak zooplankton biomass is found from June to August in the northern section and from May to July in the southern section. Zooplankton biomass has been steadily decreasing over the duration of the time-series, most noticeably in the northern section. This is also seen in the weakening (reduced magnitude) of the peak biomass period in the northern section and to a lesser extent in the southern section.

This is a cooperation between Institute of Marine Research (IMR) in Norway (Contact person Randi Ingvaldsen, randi.ingvaldsen@imr.no) and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia.

Main objective of the network:


- 1. Describe water mass distribution and properties
- 2. Document ocean climate variability as part of long time series
- 3. Relate ocean climate variability to variation in recruitment, growth, condition and size of commercial fish stocks Observations are taken by IMR from research vessels.

The programme is carried out in cooperation with Russia (PINRO) coordinated under the Joint Norway-Russia Fisheries Commission. The current meter moorings are shifted once a year.

Motivations

From no change \rightarrow to all about change \rightarrow legacy

«The field for future exploration is tremendous» Scientific work of the Maud 1922-1925; Harald U. Sverdrup, 1926.

The Maud Expedition (1918-1925) – The Oceans (1942)

Variable	Sampling	-				
Physical and chemical measurements						
Pressure	CTD					
Temperature	CTD					
Salinity	CTD + Niskin					
Dissolved Oxygen	CTD + Niskin					
Nutrients (NO ₃ /NO ₂ , PO ₄ , SiO ₃)	Niskin	Dhysical				
CFCs and SF ₆	Niskin	Physical-				
Dissolved Inorganic Carbon	Niskin	Chemical				
Total Alkalinity	Niskin	chemical				
pH	Niskin					
δ^{18} O of H ₂ O	Niskin					
Methane	Niskin					
Dissolved Organic Carbon (DOC)	Niskin					
Particulate Organic Carbon (POC)	Niskin					
Water column ecosystem measureme	ents					
Chlorophyll	Niskin					
Primary production	Incubation					
Viruses	Niskin					
Bacteria	Niskin					
Phytoplankton composition	Niskin					
Microzooplankton	Niskin	D:				
Meso-and Macro- zooplankton	Bongo nets, Multinet, Optical	Bio-Eco				
	Instruments, Acoustics					
Icthyoplankton	Aluette or Tucker Trawls, Acoustics					
Fish	Trawls, Acoustics					
Marine mammals	Passive acoustics, Visual observations					
Other Carbon transformation rates	Selected process studies (e.g., grazing,					
	reproduction, sinking, respiration)					
Benthic measurements						
Meio- and Macro- fauna	Box Core or Multicore or other corers					
Epifauna	Benthic camera, Beam trawl					
Other Carbon transformation rates	Selected process studies (e.g., grazing,					
	reproduction, sinking, respiration)					
Other						
Epontic Communities	Under-ice imaging, ice cores, sub-ice					
	sampling					
Seabirds	Visual Observations	-				

The measurements

