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Most marine animals have planktonic larvae

Barnacle larva

Anglerfish larva

Seastar larva

Lobster larva

Polychaete larva

• potential for long-distance dispersal
• substantive effects on population dynamics and management 



• create biophysical model
- hydrodynamics (at relevant spatial and temporal scales)
- larval dispersal trajectories
- connectivity among sites (connectivity matrix)

• identify optimal MPA network  (fancy mathematics)
- de novo

- as extension of existing network

• evaluate potential benefits of alternatives

• identify barriers to dispersal
- biogeographic “units”



3D-circulation model

Biophysical modeling

• BaltiX
- circulation model
- 120,000 km2 
- grid of 2 nm x 2 nm
- 119 depth layers

- run for 8 years (1995-2002)
- data every 3h

- transport vectors, T°, salinity
- describes circulation



3D-circulation model

10 km

trajectory 
model

Biophysical modeling

• TRACMASS model
- uses BaltiX output 

“offline”
- releases virtual larvae

- reproductive season
- planktonic duration
- depth distribution
- (no larval behaviour)

- output:
- start & end points
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Larvae (and algal spores) are typically:
• small (<1 mm) 
• numerous (10 4 – 10 7 per spawning) 
• long-lived (weeks – months)
• display behaviour that can affect dispersal
• very little is known

Larval dispersal is difficult to study
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Most marine animals have planktonic larvae

Barnacle larva

Anglerfish larva

Seastar larva

Lobster larva

Polychaete larva

0.1-0.5mm, ≤ 40 d

2-12 mm, ≤ 30 d

 0.5-5mm, ≤ 4 mo 
0.2-0.5mm, ≤ 20 d

≤ 20 mm, ≤ 50d

• potential for long-distance dispersal
• substantive effects on population dynamics and management 
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Gobies (fish)

Depth distribution of larvae

     Barnacles
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Snails       

Polynoid worms       



Invertebrates Fish

Moksnes et al. 2014. Larval connectivity and ecological coherence of MPAs 
in the Kattegat-Skagerrak region. 
Swedish Institute for the Marine Environment report 2014:2 

Database of larval distribution & season



Jonsson et al. 2016 Diversity & Distributions

Scenarios of larval distribution & season
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Scenarios of larval distribution & season



Larval dispersal under 
“simple scenarios”:

- large effects of larval duration, 
drift depth and release 
location

- typical dispersal distance is 
much larger than most MPA’s

Scenarios of larval distribution & season
10 days 
0-2 m

10 days 
25 m

30 days 
25 m

30 days 
0-2 m

Jonsson et al. 2016 Diversity & Distributions



Surface
10 d

Deep
10 d

Surface
30 d

Deep 
30 d

Each dispersal strategy produces a unique connectivity matrix

Connectivity matrix for each scenario



• create biophysical model
- hydrodynamics (at relevant spatial and temporal scales)
- larval dispersal trajectories
- connectivity among sites (connectivity matrix)

• identify optimal MPA network  (fancy mathematics)
- de novo

- as extension of existing network

• evaluate potential benefits of alternatives

• identify barriers to dispersal
- biogeographic “units”



MPA network

Larval 
dispersal

Nilsson Jacobi & Jonsson. 2011. Ecological Applications
Jonsson et al. (2016) Diversity and distributions

• “Eigenvalue Perturbation Theory”
- selects areas that both deliver (sources) and 

receive (sinks) high numbers of larvae

- identifies the optimal areas for the maximal 
overall connectivity

- ranks all areas based on their contribution

Identifying the optimal MPA-network



Nilsson Jacobi & Jonsson. 2011. Ecological Applications
Jonsson et al. (2016) Diversity and distributions

Identifying the optimal MPA-network

10 days 
0-2 m

30 days 
25 m



Identifying the optimal multi-species MPA-network

Optimal de novo MPA 
network ALL scenarios



Identifying the optimal multi-species MPA-network

Optimal de novo MPA 
network ALL scenarios

Optimal MPA 
network ALL species 
Natura 2000 MPA’s 

OSPAR MPA’s



• create biophysical model
- hydrodynamics (at relevant spatial and temporal scales)
- larval dispersal trajectories
- connectivity among sites (connectivity matrix)

• identify optimal MPA network  (fancy mathematics)
- de novo

- as extension of existing network

• evaluate potential benefits of alternatives

• identify barriers to dispersal
- biogeographic “units”



• model dispersal & growth in each meta-population 
- do this for 100 years

• simulate positive effects of MPA’s 
- 20% higher growth rate

• simulate random disturbances 
- 95% reduction in population size every 8th year

• evaluate networks 
- compare size of populations after disturbance

Nilsson Jacobi & Jonsson. 2011. Ecol. Appl.
Jonsson et al. 2016 Diversity and distributions

Evaluating alternate model MPA-networks
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Eigenvalue pertubation theory 
(EPT-modell)

3-10% increase from 
existing network

180% increase from 
EPT-network

Evaluating an optimal multi-species MPA-network

Moksnes et al. 2014. Larval connectivity and ecological 
coherence of MPAs in the Kattegat-Skagerrak region. 
Swedish Institute for the Marine Environment report 2014:2 
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Eigenvalue pertubation theory 
(EPT-modell)

3-10% increase from 
existing network

Evaluating expansion of an existing MPA-network

Moksnes et al. 2014. Larval connectivity and ecological 
coherence of MPAs in the Kattegat-Skagerrak region. 
Swedish Institute for the Marine Environment report 2014:2 
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Eigenvalue pertubation theory 
(EPT-modell)

3-10% increase from 
existing network

Moksnes et al. 2014. Larval connectivity and ecological 
coherence of MPAs in the Kattegat-Skagerrak region. 
Swedish Institute for the Marine Environment report 2014:2 
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Eigenvalue pertubation theory 
(EPT-modell)

3-10% increase from 
existing network

Moksnes et al. 2014. Larval connectivity and ecological 
coherence of MPAs in the Kattegat-Skagerrak region. 
Swedish Institute for the Marine Environment report 2014:2 
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Evaluating expansion of an existing MPA-network



• create biophysical model
- hydrodynamics (at relevant spatial and temporal scales)
- larval dispersal trajectories
- connectivity among sites (connectivity matrix)

• identify optimal MPA network 
- de novo

- as addition to existing network

• evaluate potential benefits of alternatives

• identify barriers to dispersal
- biogeographic “units”



1-2% connectivity

• 0-10 m
• 60 day duration
• dispersal at surface 

Dispersal barriers & Management units

genetic separation
intermediate connectivity 10% connectivity

demographic separation

• patterns vary with:
- release depth
- larval duration
- dispersal profile



- large spatial resolution (2 nm) cannot model coastal circulation well
larval retention in bays underestimated

Limitations of the approach

- species distribution data, and habitat types, are not included
these influence locations of larval release as well as growth of populations:
KEY aspect of MPA specification!

- selection only operates on larval connectivity
habitat quality, adult dispersal, targeted fishing/disturbance also important



1. this is can be a very powerful tool
-  if the circulation model data are available

2. larval dispersal and connectivity vary with location and larval strategies
-  cannot be approximated with general dispersal distances

3. modeling different larval strategies can provide valuable information

4. existing MPA-networks are not optimally designed for larval connectivity

5. carefully chosen small additions (<20%) to existing networks can double 
population size & resilience

6. this modeling approach can identify dispersal barriers that are important 
for management

Conclusions



Thank you!

• Swedish Agency for Marine & Water Management
• Gothenburg University
• Swedish Research Council VR
• Swedish Environmental Research Council FORMAS 



Networks of marine protected areas (MPAs)

North Atlantic (OSPAR) Baltic (HELCOM)



1. Adequacy
2. Representativity
3. Replication
4. Connectivity

Natura 2000 (EU)

• 3000 sites covering ~ 6% of EU territorial waters
• “Ecological Coherence”



don’t disperse passively
• Planktonic Larval Duration (PLD)
• dispersal depth
• spawning time

Larvae interact with ocean currents

surface currents

deep currents



Comparison with earlier assessment of connectivity of MPA-networks

OSPAR / HELCOM                 The present method
1. Only between MPAs                                             

Area- and species-specific 
individually modeled dispersals

3. Methods to evaluate network  
   connectivity and coherence missing

2. Fixed general dispersal-
   distances (e.g. 250 km)

Between all relevant areas

New method to identify optimal 
MPA-networks for multiple species 
(consensus networks)

Nilsson Jacobi & Jonsson. 2011. Ecol. Appl. 21:1861-1870 
Nilsson Jacobi et al. 2012. Ecography. 35:1004-1016 
Moksnes P-O et al. 2014. Swedish Institute for the Marine Environment. Report no. 2014:2  
Moksnes P-O et al. 2015. Swedish Agency for Marine and Water Management. Report. 2015:24 
Jonsson et al. 2016 Diversity and distribution 22:161-173



5 km

Virtual larvae released from all grid cells 
0-100 m (in total 34 000 cells). 

20 different larval types (drift depths, larval 
duration) released from all cells once per 
month during 8 years. 

In total, 3.2 million virtual larvae modeled.

 
b. Particle tracking modell simulating larval dispersal (TRACMASS)
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Estimates of connektivity 
Connectivity matrix (probability estimates) 

For each larval type


